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Summary 

The paper presents a method of modal parameter estimation based on RLS (Recursive Least 
Square) algorithm, and wavelet filtering. The wavelet filtering gives possibility to decoupling 
frequency components of signal response of structure. This operation can also reduce the order of 
the signal model estimated by RLS algorithm. An additional advantage of this method is the 
possibility of adapting the wavelet filter parameters to the changing parameters of the system. 
Reduced model order significantly reduces the time of estimation of modal parameters, which 
enables the real – time  implementation of the method. Due to recursively updated covariance 
matrix of model parameters, the confidence intervals of modal parameters can be also estimated. 
All routines have been  implemented and tested in MATLAB®. The method have been tested on 
simulated data delivered by an AIRBUS team and on the test bed with a variable stiffness. 
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IDENTYFIKACJA PARAMETRÓW MODALNYCH UKŁADÓW NIESTACJONARNYCH Z 

WYKORZYSTANIEM ADAPTACYJNEGO FILTRU FALKOWEGO ORAZ REKURSYWNYEGO 
ALGORYTMU NAJMNIEJSZYCH KWADRATÓW 

 
Streszczenie  

Artykuł prezentuje metodę estymacji parametrów modalnych bazująca na algorytmie RLS 
(RLS (Recursive Least Square) oraz filtracji falkowej. Filtracja falkowa daje możliwość separacji 
składników częstotliwościowych sygnału. Ta operacja redukuje rząd modelu estymowanego przez 
algorytm RLS. Dodatkowa zaletą algorytmu jest możliwość adaptacji parametrów filtru falkowego 
do zmieniających się parametrów układu. Redukcja modelu znacznie skraca czas estymacji 
parametrów modalnych. Umożliwia to implementację algorytmu w czasie rzeczywistym. Dzięki 
rekursywnemu uaktualnianiu macierzy kowariancji parametrów modelu estymowane są również 
przedziały ufności otrzymanych wyników. Wszystkie procedury zostały zaimplementowane w 
środowisku MATLAB. Metodę przetestowano dla danych symulacyjnych (model samolotu 
dostarczony przez firmę AIRBUS), oraz dla układu ze zmienna sztywnością.  

  
Słowa kluczowe: Transformata falkowa, rekursywne metody identyfikacji, układy niestacjonarne.  

 
 

1. INTRODUCTION 
 

Many practical engineering systems change 
dynamic parameters during their operation. Possible 
reason of parameters change can be damage, 
changes of operational conditions or  occur some 
physical phenomena causing changes in dynamics of 
the system. Analysis of nonstationary systems are 
more difficult than in stationary case and require a 
dedicated method of identification. 

Nonstationary linear mechanical systems are 
those systems whose parameters as stiffness,  natural 
frequency, mass and damping ratios or statistical 
properties of an input signal (such as mean value and 
variance) are  time dependent. Changes of this 
parameters can be caused by many factors, from 

changes of environmental conditions like 
temperature, humidity, changes of structure 
geometry, variable operational conditions to 
damage. In practice, many engineering structures 
like traffic – excited bridges, rotating machinery 
working with varying speed, aircrafts, robots, cranes 
and many others should be treated as non – 
stationary systems. Analysis of  non – stationary 
systems require application of dedicated method 
which can not be based on averaging which is most 
popular way of improving quality of parameters 
identification results. In some cases, when changes 
of parameters are slow, the system can be treated as 
stationary in given time interval. Firsts attempts of  
non – stationary systems parameters identification 
consists in adaptation of classical identification 



DIAGNOSTYKA, Vol. 16, No. 1 (2015)  
KLEPKA, Real Time Estimation Of Modal Parameters Of Non-Stationary… 

 

4

method of Linear Time Invariant (LTI) systems. 
Main problem of this approach was to adapt 
classical algorithm to operate on small number of 
samples, where quasistationarity condition was 
assumed. Within the space of the last several dozen 
years many method for non – stationary system 
identification were created. The method based on 
different algorithms like for example BTLS 
(Bootstarpped Total Least Squares) , RLS 
(Recursive Least Square), TARMA (Time-
dependent Autoregressive Moving Average), 
Recursive Subspace and many others. In the 
literature many of application of this method can be 
found. 

One of an example of phenomenon causing 
nonstationary behavior of aircrafts (but not only) can 
be flutter phenomenon. Unstable vibrations of an 
airplane can be a reason of a catastrophic failure of 
the aircraft [1]. A critical instability phenomenon is 
known as “aero-elastic flutter”. In the literature [2-4]  
many cases of flutter phenomena are carefully 
studied. The importance of accurate definition 
aeroelastic effects such as flutter on flight vehicles 
are evident and in fact can be traced earliest days of 
manned aviation itself. For preventing from a flutter 
phenomenon, the airplane is submitted to a flight 
flutter testing procedure, with incrementally 
increasing altitude and airspeed. Flight flutter testing 
procedure can be formulated as procedure of 
stability test. One possible solution is to find instable 
poles (which are responsible of flutter phenomena) 
of the aircraft structure with employing modal model 
parameters. Important challenges of the in-flight 
modal analyses are the limited choices for measured 
excitation inputs, and the presence of unmeasured 
natural excitation input (e.g. turbulence). A better 
exploitation of flight test data can be achieved by 
using output-only system identification methods, 
which exploits recorded vibration data under natural 
excitation conditions, without artificial control 
surface excitation and other types of excitation 
inputs [1,3]. There are many different modal 
parameters identification methods that could be used 
for flight flutter testing [4-7]. 

This paper presents a recursive modal parameters 
identification method of nonstationary systems. The 
classical RLS algorithm is supported wavelet 
transform which allows decouple components of the 
signal response and reduce the order of the model. 
This operation greatly accelerated the process of 
modal parameter estimation, which is a critical part 
of the algorithm. Such an approach allow real – time 
implementation of the algorithm. The method was 
applied to identification of  modal parameters of  
airplane model  and to track frequency changes of 
the system with variable stiffness.  

 
 
 
 

2.  RECURSIVE METHOD OF MODAL 
PARAMETERS ESTIMATION 
 
The proposed algorithm consists of three main 

parts. In the first step the signal is decomposed by 
wavelet transform. In second step model parameters 
are estimated. In third step a modal parameters and 
their standard deviation are determined. 
Organization of the algorithm shown in Figure 1.  

 

 
Fig. 1. Organization of the algorithm 

 
2.1 Wavelet Transform 
 

The wavelet analysis is a method of signal 
decomposition. As a result of the wavelet analysis, 
in contradiction to the Fourier transform, elementary 
signals – so called wavelets – are obtained. Wavelet 
functions are continuous, oscillated with various 
duration times and spectrums. From the 
mathematical point of view, a continuous wavelet 
transform (CWT) of a signal x(t) can be defined as 
[8,9] 
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Using properties of wavelet transform, can be 
proved mathematically that this kind of time 
frequency analysis decoupling frequency 
components of signal. Utilizing above – mentioned 
feature as signal processing method each component 
of the signal can be analyzed separately. 
Additionally order of the model using to 
identification process is reduced to model for only 
given frequency component of the signal. This 
approach decrease computational effort which can 
be significant for higher model order systems 
especially during finding a roots of the characteristic 
polynomial. 
 

 
Fig. 2. Wavelet based signal components decoupling 
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Besides, it is not always demand to track all 
natural frequencies and damping ratios of the 
system. Using wavelet filtration only critical modes 
(from the point of view of process) can be track. It 
also reduces demand for computational capability 
which increase applicability of method and makes 
real – time implementation process easier. 
Schematically process of frequency component 
decoupling is shown in Figure 2. More detailed 
information about frequency components decoupling 
can be found at [9]. 
 
2.2. Recursive Least Square algorithm 

 
Method of estimation model coefficients based 

on RLS algorithm. Schematically the algorithm is 
presented in Figure 3. 

 

 
Fig. 3. Organization of Recursive Least Square 

method 
 

The i indicate successive number of sample from 
A/D converter or memory buffer. Determination of 
modal parameters from the received signal model is 
time consuming for of higher orders models and 
require to find the roots of the characteristic 
polynomials. By using wavelet filtering, only one 
frequency component of the signal is analyzed. This 
determines the order of estimating model. It is worth 
taking into consideration that by using wavelet 
transform the problem of selection the model order 
is solved. This problem (though very important) will 
not be discussed in this article. 
 
2.3. Modal parameters and their standard 

deviation 
 
Thanks to low (equal to 2) model order, 

estimation of modal parameters is reduced to the 
application of simple mathematical formulas. For 
example, the natural frequency of the system and the 
corresponding damping coefficient can be 
determined from the dependence: 
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where: a1, a2 – model coefficients, ω - natural 
frequency, ζ - damping ratio, Ts – sampling time. 
When analytical dependences between modal and 
model parameters are known it is possible to 
calculate covariance matrix of modal parameters 
[10,11]. 
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where: E  - is the expected value, 

],,...,,[ˆ 2211 nsN ζωζωζωκ =  - is a vector of 

estimated modal parameters, 0κ  - is a vector of true 

modal parameters, ( )nP κκ ˆˆ  - is a covariance matrix 
of modal parameters. Using Taylor series expansion 
method, the covariance matrix of modal parameters 
can be expressed as: 
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Where ( )NJ θ̂  is the following Jacobi matrix: 
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and θ  - is the vector of model parameters. In 
general case the Jacobi matrix is impossible to 
determine, that is why in the considered case the 
numerical differentiation with the Central Difference 
method was applied. When the standard deviation of 
modal parameters is known, the confidence bounds 
can be easy determined using “n sigma” method. In 
this work “three sigma” was assumed. It means that 
about 99,7% of the values lie within three standard 
deviation range from expected value. 
 
3. ADAPTIVE WAVELET FILTERING 

 
Main difficulty of the identification process with 
using wavelet transform algorithm is selection of 
parameters responsible for decoupling of signal 
frequency components. The issue connected with 
proper wavelet function parameters selection mainly 
concern the Heisenberg relation. According to this 
rule the signal cannot be analyzing with the same 
good resolution in time and frequency domain 
simultaneously. Selection of wavelet function 
require some compromise between quality of 
information from frequency and time domain. 
Additional inconvenience of using constant wavelet 
function for identification process is that it has 
limited bandwidth. In situation where changes of 
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signal frequency component are grater then half of 
assumed bandwidth parameter (to assume that 
central frequency of wavelet filter is tuned to 
frequency of given component) filtration process can 
be incorrect and obtained  results can be only filter 
response. This problem is presented in figure 2a. 
Detailed information about non – adaptive wavelet 
filtering method for system parameter identification 
can be found at (Klepka A. Uhl T 2008, Uhl T. 
2008). Solution of constant filter bandwidth problem 
can be make bandwidth parameter conditional on 
identification process. This requires the 
determination of wavelet functions for different 
moments in time. Applying that, formula 1 must be 
rewritten as: 
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where i is given time interval. Determination of 
wavelet functions which allows filtration of the 
given  frequency component requires definition of a 
scale parameter associated with the frequency by the 
formula: 

i

s
i a

Tf =    (7) 

 
where Ts is sampling time and fi is frequency 
corresponding to scale parameters ai. From the 
above relation shows that if the scale parameter 
changes will also change the frequency of the signal 
filtering. This allows to change the band wavelet 
filter during identification process. 
In the presented algorithm, the scale parameter ai is 
determined based on the frequency fi estimated from 
recursive model.   
 

 
Fig. 4. Scheme of adaptive procedure organization 

 
Adaptation process is realized  by comparing 

wavelet frequency and frequency obtained from 
RLS algorithm. If the frequencies have the same 
value or their difference contain in given range, 
identification process is continued without any 
changes, but if this two frequencies have different 
value or their difference has value greater than 
assumed, the frequency of  wavelet function is 
changed to value corresponding to frequency value 
estimated from RLS algorithm. Schematically, 
process adaptation and diagram of method with 
adaptive wavelet filtering is presented in figure 4, 
where fe and fw are current estimated frequency and 
wavelet frequency respectively.  

4. CASE STUDIES 
 

4.1. An aero – elastic model 
 

The aeroelastic equations define the time 
evolution of the vector   of the structure generalized 
displacements by the second-order differential 
equation  [12]. The left-hand side of this equation 
concerns the structural efforts while the right-hand 
side is the sum of various external forces. The vector 
of the measurements   depends linearly on   and its 
first and second derivatives according to equation : 
 

)()()(=)()()()( tFtFtFtKtGAtM tca +++++ qqq &&&    (8) 
 
q (t) - Vector of the generalized displacements, M,  
A,   K - Structural mass, damping and stiffness, G - 
Gyroscopic terms due to the engines, F_a(t) - 
Unsteady aerodynamic forces, F_c(t) - Control 
surface forces function of the deflections ( )tδ , 
F_t(t) - Turbulence forces function of the wind 
speeds ( )tW . Based on presented model the 
simulation was perform. The scenario of simulation 
assumed that speed of plane would be uniformly 
increased form 330 kts to 360 kts.  
The results of modal parameters identification of the 
model for mode responsible  for flutter phenomena 
shown in Figures 5 and 6. 
 

 
Fig. 5. Comparison of identification results:  

a) damping ratio, b) frequency 
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Fig. 6. Identified time history of modal parameters 

non – stationary aero - elastic system with estimated 
confidence bounds: a) damping ratio, b) natural 

frequency 
 

As can be noticed some peaks appeared in 
estimated confidence bounds. This occurrence is 
caused by wavelet adaptation process. In the next 
step after wavelet function changing, the RLS 
algorithm is called with initial parameters connected 
with “old” wavelet function. As a result of it 
covariance matrix values increase temporary. This 
problem was solved in hardware version where 
parallel computation can be perform. 
 

4.2. System with variable stiffness 
 

The hardware implementation of algorithm was 
tested on the 1DOF system with variable stiffness. 
Experimental setup of experiment is presents in 
Figure 7.  
 

 
Fig. 7. Experiment arrangement 

 
An electromagnetic shaker and signal generator 
were used to excite the structure.  White noise signal 

was used as excitation signal. During experiment, 
pressure in metal bellows was changed. As result of 
system stiffness changes natural frequency of the 
system was shifted.. Time history of system 
response, result of natural frequency identification 
are presented in figure 8. 
 

 
Fig. 8. System response (a), Comparison of 

identified natural frequency of the system (b) 
 

Additionally, wavelet adaptation process was 
presented in Figure 8b (red dashed line). 
 
5. CONCLUSIONS 
 

All performed test showed that adaptive wavelet 
formula combined with RLS algorithm gives 
satisfactory results. Natural frequency of the systems 
are identified much better then damping ratios. Good 
results of natural frequency identification gives a 
possibility of use this kind of algorithm in other 
applications. An example can be vibrating string 
sensors where frequency of oscillation of sensor 
resonator can give information about changes of 
operational condition. Another example can be 
process of rotational speed tracking in structures like 
wind turbine, gear boxes or mining machines. A 
formulated algorithm allows computing modal 
parameters of structures in real – time. Hardware 
implementation of the algorithm is proposed with 
the Hardware-Software Co-design approach, i.e. a 
part realized by hardware and the remaining part by 
software running on a Nios II soft-processor 
contained in the FPGA. Using adaptive formula of 
wavelet filter, process of wavelet function selection 
was simplified. The method enable to track modal 
parameters of the non – stationary system even if 
their changes are significant. 
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